MAMIBIA UMIVERSITY OF SCIEMCE AMD TECHMOLOGY

Faculty of Health and Applied Sciences

Department of Mathematics and Statistics

QUALIFICATIONS: B. Business Admin, B. Marketing, B. Human Resource Management, B. Public	
Management and B. Logistics and Supply Chain Management	
QUALIFICATION CODES: 21BBAD / O7BMAR / O7BHR / 24BPN / O7BLSM	LEVEL: 6
COURSE: BASIC BUSINESS STATISTICS 1B	COURSE CODE: BBS112S
DATE: NOVEMBER 2019	SESSION: 1
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	MR EM MWAHI, MS A SAKARIA, MR I NDADI, MR G MBOKOMA, MR R MUMBUU,
	MR A ROUX, MR G TAPEDZESA

THIS QUESTION PAPER CONSISTS OF 7 PAGES

(Including this front page)

INSTRUCTIONS

1. Answer all the questions and number your solutions correctly.
2. Question 1 of this question paper entails multiple choice questions with options \mathbf{A} to D. Write down the letter corresponding to the best option for each question.
3. For Question 2 \& 3 you are required to show clearly all the steps used in the calculations.
4. All written work MUST be done in blue or black ink.
5. Untidy/ illegible work will attract no marks.

PERMISSIBLE MATERIALS

1. Non-Programmable Calculator without the cover

ATTACHMENTS

1. Standard normal Z-table, Student t-table and Chi-square table.

QUESTION 1 [30 MARKS]

Write down the letter corresponding to the best answer for each question.
1.1 You take a random sample from some population and form a 96% confidence interval for the population mean, which quantity is guaranteed to be in the interval you formed?
A. 0
B. μ
C. \bar{x}
D. 0.96
1.2 What should be the value of z used in a 92% confidence interval?
A. 2.70
B. 1.75
C. 1.81
D. 1.89
1.3 Why do we use inferential statistics?
A. To help explain the outcomes of random phenomena
B. To make informed predictions about parameters we don't know
C. To describe samples that are normal and large enough ($n>30$)
D. To generate samples of random data for a more reliable analysis
1.4 Statistics and parameters....
A. Are both used to make inferences about \bar{x}
B. Describe the population and the sample, respectively.
C. Describe the sample and the population, respectively.
D. Describe the same group of individuals.
1.5 To test for equality of one population variances, one would use the \qquad test. [2]
A. Z
B. t
C. F
D. Chi-square
1.6 A null hypothesis was rejected at level alpha=0.10. What will be the result of the test at level alpha= 0.05 ?
A. Reject Ho
B. Fail to Reject Ho
C. No conclusion can be made
D. Reject Ha
1.7 If in a random sample of 400 items, 88 are found to be defective. If the null hypothesis is that 20% of the items in the population are defective, what is the value of the test statistic?
A. 0.02
B. 1
C. 0.9656
D. 0.22
1.8 A \qquad is a range of numbers inferred from the sample that has a certain probability of including the population parameter over the long run.
A. Hypothesis
B. Lower limit
C. Confidence interval
D. Probability limit
1.9 The null and alternative hypotheses divide all possibilities into:
A. Two sets that overlap
B. Two non-overlapping sets
C. Two sets that may or may not overlap
D. As many sets as necessary to cover all possibilities
1.10 What is the standard deviation of a sampling distribution called?
A. Sampling error
B. Sample error
C. Standard error
D. Simple error
1.11 What does it mean when you calculate a 95\% confidence interval?
A. The process you used will capture the true statistic 95% of the time in the long run
B. You can be " 95% confident" that your interval will include the population parameter
C. You can be " 5% confident" that your interval will not include the population parameter
D. All of the above statements are true
1.12 What is the key question in the field of statistical estimation?
A. Based on my random sample, what is my estimate of the population parameter?
B. Based on my random sample, what is my estimate of normal distribution?
C. Is the value of my sample statistic unlikely enough for me to reject the null hypothesis?
D. There is no key question in statistical estimation
1.13 When the researcher fails to rejects a false null hypothesis, a \qquad error occurs. [2]
A. Type I
B. Non-sampling
C. Type II
D. Sampling
\qquad is the difference between a sample statistic and the corresponding population parameter.
A. Standard error
B. Sampling error
C. Difference error
D. Type I error
1.15 The use of the laws of probability to make inferences and draw statistical conclusions about populations based on sample data is referred to as \qquad
A. Descriptive statistics
B. Inferential statistics
C. Sample statistics
D. Population statistics

QUESTION 2 [32 MARKS]

2.1 Suppose that the mean intelligence of 1800 high school boys is known to be normally distributed with a mean of 200 and a standard deviation of 16 . A sample of 36 is drawn from this population.
2.1.1 How many school boys have the mean intelligence of more than 195 ?
2.1.2 What is the probability that the mean intelligence is between 193 and 207? [5]
2.2 The operations manager of a large production plant would like to estimate the mean amount of time a worker takes to assemble a new electronic component. Assume that the standard deviation of this assembly time is 3.6 minutes. How many workers should be involved in this study in order to have the mean assembly time estimated up to ± 15 seconds with 90% confidence?
2.3 A biology student at a major university is writing a report about bird watchers. She has developed a test that will score the abilities of a bird watcher to identify common birds. She collects data from a random sample of people that classify themselves as bird watchers (data shown below).

4.5	9.1	8.5	5.9	7.0	5.2	7.3
7.6	8.2	6.4	4.8	5.8	6.2	8.5

2.3.1 Calculate the sample mean score

2.3.2 Estimate the mean score of the population of bird watchers with a 90% confidence level.
2.4 Experimenters injected a growth hormone gene into thousands of carp eggs. Of the 400 carp that grew from these eggs, 20 incorporated the gene into their DNA.
2.4.1 Calculate a 95% confidence interval for the proportion of carp that would incorporate the gene into their DNA.
2.4.2 Construct a 99% confidence interval for the proportion of carp that would incorporate the gene into their DNA.
2.4.3 Which of the intervals above is more precise in estimating the true proportion? Justify your answer.

QUESTION 3 [38 MARKS]

3.1 Gabriel Taapopi (GT) Secondary school has 1000 students. The principal of the school believes that the average IQ of students at GT is more than 110. To prove her point, she administers an IQ test to 20 randomly selected students. Among the sampled students, the average IQ is 108 with a standard deviation of 10. Assuming that the test scores in the population are normally distributed, test the principal's believe at a significance level of 0.01 .
3.2 At a cereal filling plant, quality control engineers do not want the variance of the weights of 750 grams cereal boxes to exceed 100 grams 2. A sample of 7 boxes of this type of cereals with a nominal weight of 750 grams had the following weights:

775	780	781	795	803	810	823

Does this sample provide strong evidence that the true variance of the weights exceeds 100 grams 2 ? Use alpha $=0.01$
3.3 Time series analysis assumes that four underlying forces, individually and collectively determine the random variable's value in a time series in any period. What are these four components?
3.4 The table below shows the quarterly sales data for New Edge Investment company (2007-2010).

	Period	Sales (N\$1000)
2007	Q1	54
	Q2	58
	Q3	94
	Q4	70
	Q1	55
	Q2	61
	Q3	87
	Q4	66
	Q1	49
	Q2	55
	Q3	95
	Q4	74
	Q1	60
	Q2	64
	Q3	99
	Q4	80

3.4.1 Using the sequential numbering method, find the trend line equation for these data. Start your coding from $x=0$.
3.5 The following are the typical prices per unit and the number of units consumed by a typical family of four during an average month in 2015 to 2018.

Item	2015		2018	
	Price	Quantity	Price	Quantity
Food	40	30	45	25
Accommodation	30	8	40	5
Petrol	1.3	75	1.4	60
Entertainment	10	10	12	8

Using 2015 as the base year,
3.5.1 Calculate and interpret the Paasche price index for the data
3.5.2 Calculate and interpret the Laspeyres's quantity index for the data

[^0]

z	0.00	0.01	0.02	0.03	. 04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	6879
0.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549
0.7	0.7580	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
0.8	0.7881	0.7910	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
1.0	0.8413	0.8438	0.8461	0.848	0.8508	0.8531	0.8554	0.8577	0.859	0.862
1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.8770	0.8790	0.8810	0.8830
1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.8980	0.8997	0.9015
1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177
1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319
1.5	0.9332	0.9345	0.9357	0.937	0.938	0.9394	0.9406	0.9418	0.9429	0.9441
1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.981	0.98
2.1	0.9821	0.9826	0.9830	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
2.2	0.9861	0.9864	0.9868	0.9871	0.987	0.9878	0.9881	0.9884	0.9887	0.9890
2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
2.4	0.9918	0.9920	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.99	0.993
2.5	0.9938	0.9940	0.9941	0.994	0.9945	0.9946	0.9948	0.9949	0.995	0.995
2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.9980	0.998
2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
3.0	0.9987	0.998	0.9987	0.998	0.9988	0.9989	0.9989	0.9989	0.9990	0.99

APPENDIX D: The t-distribution

APPENDIX E: The Chi-Square Distribution

[^0]: Source: Cumulative standard normal probabilities generated by Minitab, then rounded to four decimal places.

